梯度下降法是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。
中文名 梯度下降
外文名 steepest descent (gradient descent)
用于 求解非线性方程组
类型 最优化算法
目录
1 简介
2 求解过程
3 例子
4 缺点
简介
梯度下降法(gradient descent)是一个最优化算法,通常也称为最速下降法。1
常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型。
求解过程
顾名思义,梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。
其迭代公式为 ,其中 代表梯度负方向, 表示梯度方向上的搜索步长。梯度方向我们可以通过对函数求导得到,步长的确定比较麻烦,太大了的话可能会发散,太小收敛速度又太慢。一般确定步长的方法是由线性搜索算法来确定,即把下一个点的坐标看做是ak+1的函数,然后求满足f(ak+1)的最小值的 即可。
因为一般情况下,梯度向量为0的话说明是到了一个极值点,此时梯度的幅值也为0.而采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值接近0即可,可以设置个非常小的常数阈值。
例子
举一个非常简单的例子,如求函数 的最小值。
利用梯度下降的方法解题步骤如下:
1、求梯度,
2、向梯度相反的方向移动 ,如下
,其中, 为步长。如果步长足够小,则可以保证每一次迭代都在减小,但可能导致收敛太慢,如果步长太大,则不能保证每一次迭代都减少,也不能保证收敛。
3、循环迭代步骤2,直到 的值变化到使得 在两次迭代之间的差值足够小,比如0.00000001,也就是说,直到两次迭代计算出来的 基本没有变化,则说明此时 已经达到局部最小值了。
4、此时,输出 x ,这个 x 就是使得函数 f(x) 最小时的 x 的取值 。
MATLAB如下:
|
|
梯度下降法处理一些复杂的非线性函数会出现问题,例如Rosenbrock函数:
其最小值在(x,y)=(1,1) 处,函数值为 f(x,y)=0。但是此函数具有狭窄弯曲的山谷,最小点 (x,y)=(1,1)就在这些山谷之中,并且谷底很平。优化过程是之字形的向极小值点靠近,速度非常缓慢。
缺点
- 靠近极小值时收敛速度减慢。
- 直线搜索时可能会产生一些问题。
- 可能会“之字形”地下降。
参考资料
- 维基百科 .维基百科[引用日期2013-05-23]
- 百度百科 . http://baike.baidu.com/item/梯度下降